Tokyo City University

Researchers Information System

inspection-site

Japanese English

TOP
Search by Faculty
or Department
Search by Keyword
Search by Research
Field
Detailed Search

Tokyo City University top

NISHIYAMA Jun

Profile Research field Research achievement Educational achievement Social contribution achievement

 

Published Papers  
No.TitleJournalVolNoStart PageEnd PagePublication dateDOIReferee
1Core Concept of Small Rotational Fuel-Shuffling Breed-and-Burn Fast Reactor with Nitride Fuel and Sodium Coolant Nuclear Science and Engineering 197 2023 https://doi.org/10.1080/00295639.2022.21299521
2Impact of the Melt-Refining Process on the Performance of Sodium-Cooled Rotational Fuel-Shuffling Breed-and-Burn Reactors Nuclear Science and Engineering 2023 https://doi.org/10.1080/00295639.2022.21536391
3Feasibility of breed-and-burn reactor core design with nitride fuel and lead coolant Annals of Nuclear Energy 182 2023 https://doi.org/10.1016/j.anucene.2022.1095831
4Granular fuel debris shape modeling in MPS-DEM for the simulation of fuel debris bed formation in water Journal of Nuclear Science and Technology 59 438 445 Apr. 3, 2022 https://doi.org/10.1080/00223131.2021.19755841
5Neutron Balance Features in Breed-and-Burn Fast Reactors Nuclear Science and Engineering 196 20 Mar. 4, 2022 https://doi.org/10.1080/00295639.2021.19803611
6Monte Carlo codes benchmarking on sub-critical fuel debris particles system for neutronic analysis Journal of Nuclear Science and Technology 59 10 Jan. 2, 2022 https://doi.org/10.1080/00223131.2021.19500681
7Impact of neutron generation time on released energy in falling fuel debris at supercritical condition Journal of Nuclear Science and Technology 59 2022 https://doi.org/10.1080/00223131.2021.19633441
8Feasibility of Sodium-Cooled Breed-and-Burn Reactor with Rotational Fuel Shuffling Nuclear Science and Engineering 196 12 2022 https://doi.org/10.1080/00295639.2021.19510631
9Characteristics of reactivity change as fuel debris falls in water Progress in Nuclear Energy 139 2021 https://doi.org/10.1016/j.pnucene.2021.1038571
10Optimization of reactor size in the small sodium-cooled CANDLE burning reactor Annals of Nuclear Energy 153 2021 https://doi.org/10.1016/j.anucene.2020.1080401
11Supercritical Transient Analysis for Ramp Reactivity Insertion Using Multiregion Integral Kinetics Code Nuclear Science and Engineering 195 2021 https://doi.org/10.1080/00295639.2020.18479791
12Neutronic modeling of a subcritical system with corium particles and water from international benchmark Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika 2020 2020 https://doi.org/10.26583/NPE.2020.2.121
13Radiation Dose Analysis in Criticality Accident of Fuel Debris in Water Nuclear Science and Engineering 194 2020 https://doi.org/10.1080/00295639.2019.16654591
14Reactivity Feedback Effect on Supercritical Transient Analysis of Fuel Debris Nuclear Science and Engineering 194 2020 https://doi.org/10.1080/00295639.2020.17435801
15Visualization of neutron characteristics distribution of debris particles Scientific Visualization 12 2020 https://doi.org/10.26583/sv.12.3.091
16Neutron total cross section measurements of polyethylene using time-of-flight method at KURNS-LINAC Journal of Nuclear Science and Technology 57 2020 https://doi.org/10.1080/00223131.2019.16478941
17Effects of compensating for fuel losses during the melt-refining process for a small CANDLE reactor Annals of Nuclear Energy 135 2020 https://doi.org/10.1016/j.anucene.2019.1069691
18Burnup Performance of CANDLE Burning Reactor Using Sodium Coolant Nuclear Science and Engineering 2020 https://doi.org/10.1080/00295639.2020.17754331
19Evaluation of Discharged Fuel in Preproposed Breed-and-Burn Reactors from Proliferation, Decay Heat, and Radiotoxicity Aspects Nuclear Science and Engineering 194 2020 https://doi.org/10.1080/00295639.2019.17063221
20Concept of breed and burn reactor with spiral fuel shuffling Annals of Nuclear Energy 127 2019 https://doi.org/10.1016/j.anucene.2018.12.0061
21Numerical analysis of criticality of fuel debris falling in water Annals of Nuclear Energy 131 2019 https://doi.org/10.1016/j.anucene.2019.03.0051
22Application of melt-refining process to transition state of CANDLE burning fast reactor Annals of Nuclear Energy 128 2019 https://doi.org/10.1016/j.anucene.2018.12.0381
23Design concepts of small CANDLE reactor with melt-refining process Progress in Nuclear Energy 108 2018 https://doi.org/10.1016/j.pnucene.2018.05.0191
24Initial core design of CANDLE burning fast reactor using plutonium from LWR spent fuel Annals of Nuclear Energy 120 2018 https://doi.org/10.1016/j.anucene.2018.06.0151
25Potential for the use of a liquid activation circulation material to measure the neutron flux in a high gamma-ray background Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 903 2018 https://doi.org/10.1016/j.nima.2018.06.0661
26Concept of Stationary Wave Reactor with Rotational Fuel Shuffling Nuclear Science and Engineering 191 2018 https://doi.org/10.1080/00295639.2018.14637441
27Effects of cooling interval time in melt and refining process for CANDLE burning Annals of Nuclear Energy 105 2017 https://doi.org/10.1016/j.anucene.2017.03.0111
28Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 849 2017 https://doi.org/10.1016/j.nima.2016.12.0311
29Development of the high-energy neutron fluence rate standard field in Japan with a peak energy of 45 MeV using the 7Li(p,n)7Be reaction at TIARA Journal of Nuclear Science and Technology 54 2017 https://doi.org/10.1080/00223131.2017.12913741
30Application of melt and refining procedures in the CANDLE reactor concept Annals of Nuclear Energy 90 2016 https://doi.org/10.1016/j.anucene.2015.12.0011
31Time-of-Flight Measurements for Low-Energy Components of 45-MeV Quasi-Monoenergetic High-Energy Neutron Field from 7Li(p n) Reaction IEEE Transactions on Nuclear Science 62 2015 https://doi.org/10.1109/TNS.2015.24322731
32Neutron dosimetry in quasi-monoenergetic fields of 244 and 387 MeV IEEE Transactions on Nuclear Science 60 2013 https://doi.org/10.1109/TNS.2013.22393121
33Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam Radiation Protection Dosimetry 155 2013 https://doi.org/10.1093/rpd/nct0291
34Response measurement of a Bonner sphere spectrometer for high-energy neutrons IEEE Transactions on Nuclear Science 59 1 PART 2 2012 https://doi.org/10.1109/TNS.2011.21754061
35Absolute measurement of activity of 198au foils using the 4πβ-γ coincidence counting method andcorrections by the Monte Carlo simulation Radiation Protection Dosimetry 148 2012 https://doi.org/10.1093/rpd/ncr0291
36Calibration of a Bonner sphere spectrometer in quasi-monoenergetic neutron fields of 244 and 387 MeV Journal of Instrumentation 10 2011 https://doi.org/10.1088/1748-0221/6/10/P100151
37Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV 7Li(p,n) reactions at angles from 0° to 30° Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 629 2011 https://doi.org/10.1016/j.nima.2010.12.0221
38The calibration of bonner sphere spectrometer Radiation Protection Dosimetry 146 1-3 2011 https://doi.org/10.1093/rpd/ncr1231
39New idea of a small-sized neutron detector with a plastic fibre Radiation Protection Dosimetry 146 1-3 2011 https://doi.org/10.1093/rpd/ncr1191
40Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields Radiation Protection Dosimetry 147 2011 https://doi.org/10.1093/rpd/ncq4931
41Development of a compact flat response neutron detector IEEE Transactions on Nuclear Science 58 5 PART 2 2011 https://doi.org/10.1109/TNS.2011.21631911
42Thermal neutron calibration method using an intense neutron beam from JRR-3M Radiation Measurements 45 10 2010 https://doi.org/10.1016/j.radmeas.2010.06.0521
43Measurements of kev-neutron capture cross sections and capture gamma-ray spectra of 117,119Sn Journal of Nuclear Science and Technology 45 2008 https://doi.org/10.1080/18811248.2008.97114441
44A detection system for (n,n′) reaction studies of astrophysical interest Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 564 2006 https://doi.org/10.1016/j.nima.2006.03.0361
45Measurements of neutron-capture cross sections of radioactive nuclides through high-energy gamma-ray spectroscopic studies KURRI Progress Report 125 125 2006  
46A study on neutron capture cross sections of MA nuclides with γ-γ coincidence method KURRI Progress Report 124 124 2006  
47New approach for measuring the (n,γ) cross section of a nucleus by a few keV neutron Journal of the Physical Society of Japan 74 11 2005 https://doi.org/10.1143/JPSJ.74.29811
48Epitaxial growth of nanometer-thick CaF2/CdF2 heterostructures using partially ionized beam epitaxy Solid-State Electronics 42 7-8 1998 https://doi.org/10.1016/S0038-1101(98)00083-51

 

Research Grants & Projects  
No.Offer organizationSystem nameTitleFund classificationDate
1Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research Study on polonium-209 as radioisotope fuel for Space Nuclear Power  Apr. 2014 - Mar. 2017